杭州成人高考网,主要为杭州考生提供报考咨询服务的网站,所有报考信息以杭州教育考试院发布的公告为准。

咨询电话:16657169113/RSS导航 /网站导航
成考专题:

2024年杭州成考专升本《高数二》备考笔记(15)

发布时间:2023-12-26整理编辑:杭州成考网

求二元函数的条件极值

求二元函数f(x,y)在条件ϕ(x,y)=0下的极值的方法与步骤:

方法一:化条件极值为无条件极值

第一步:从条件ϕ(x,y)=0中,求出y的显函数形式y=ψ(x);

第二步:将y=ψ(x)代人二元函数f(x,y)中,化为一元函数f[x,ψ(x)]的无条件极值;

第三步:求出一元函数f[x,ψ(x)]的极值即为所求.

方法二:拉格朗日乘数法

第一步:作拉格朗日函数F(x,y,λ)=f(x,y)+λϕ(x,y)(入为拉格朗日乘数);

第二步:由函数F(x,y,λ)的一阶偏导数组成如下方程组

Fₓ(x,y,λ)=fₓ(x,y)+λϕₓ(x,y)=0,

Fᵧ(x,y,λ)=fᵧ(x,y)+λϕᵧ(x,y)=0,

Fλ(x,y,λ)=ϕ(x,y)=0;

第三步:求解上述方程组,得驻点(x₀,y₀,λ),则点(x₀,y₀)就是函数f(x,y)在条件ϕ(x,y)=0下的可能的条件极值点.

通常,判定所得点(x₀,y₀)是否为所给问题的条件极值点,常依据问题的实际意义判定:如果所求驻点唯一,且实际问题的确存在最大值(或最小值),那么,所求点(x₀,y₀)就是满足条件的极大值点(或极小值点),也是所给实际问题的最大值点(或最小值点).


【免责声明】

  • 1、由于各方面情况的调整与变化,本网提供的考试信息仅供参考,考试信息以省考试院及院校官方发布的信息为准。
  • 2、本网信息来源为其他媒体的稿件转载,免费转载出于非商业性学习目的,版权归原作者所有,如有内容与版权问题等请与本站联系。联系邮箱:952056566@qq.com

杭州成考考试服务

距2025年成人高考报名还有

考试时间:暂无数据
进入成考报名系统 进入成绩查询系统

杭州成考在线客服

扫一扫 添加老师

对成考有疑惑?在线老师随时解惑

杭州成考报考服务